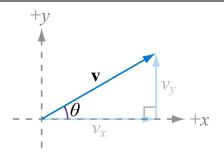
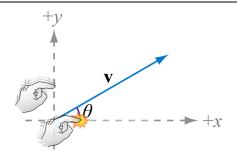
## Resolve components for "slanted" vectors using trigonometry

## Slower method: Draw and analyze a right triangle

Faster method: Swipe the axes



- 1. Draw and label the vector of interest (in this example  $\vec{\mathbf{v}}$ )
- 2. Draw an axis system.
- 3. Draw an acute or right angle  $\theta$  between the direction of  $\vec{v}$  and one of the axes.



- 4. Draw a right triangle with  $\vec{\mathbf{v}}$  as the hypotenuse and legs parallel to the axes. For now, use  $v_x$  and  $v_y$  to label the lengths of the legs parallel to the x-axis and y-axis, respectively.
- 5. Apply mnemonic SOH-CAH-TOA to form leg-hypotenuse ratios. In this example, the ratios are

$$\cos \theta = \frac{v_x}{v}$$

$$\sin \theta = \frac{v_y}{v_z}$$

6. Solve for the component lengths

$$v_x = v \cos \theta$$

$$v_{v} = v \sin \theta$$

7. Assuming that the symbols  $v_x$  and  $v_y$  represented nonnegative **lengths** might have resulted in failing to capture one or two negative signs that should have been part of the expressions for the **scalar** components  $v_x$  and  $v_y$ . Determine whether a + or – should lead each expression for each component by identifying the direction of each component on the drawing of the right triangle.

$$v_x = \pm v \cos \theta$$

$$v_{v} = \pm v \sin \theta$$

4. Determine the sign of the *x*-component of  $\vec{\mathbf{v}}$ :

| <b>,</b> | " $\vec{v}$ is more in the $+x$ direction than in the $-x$ direction." | " $\vec{v}$ is more in the $-x$ direction than in the $+x$ direction." |
|----------|------------------------------------------------------------------------|------------------------------------------------------------------------|
|          | $v_r = +$                                                              | $v_r = -$                                                              |

5. Write the symbol for the magnitude of the vector:



$$v_x = +v$$

$$v_x = -i$$

- 6. Determine which trigonometric function to use:
  - a. Swipe your finger back-and-forth along the *x*-axis.

| <b></b>    | "My finger bumps into the arc labeling the angle $\theta$ . | "My finger misses the arc labeling the angle $\theta$ . |
|------------|-------------------------------------------------------------|---------------------------------------------------------|
| $\bigcirc$ | Bumping into                                                | Missing                                                 |
|            | Near                                                        | Far                                                     |
|            | Adjacent                                                    | Opposite                                                |
|            | cosine                                                      | sine                                                    |
| 0          | $v_x = \pm v \cos \theta$                                   | $v_x = \pm v \sin \theta$                               |

7. Repeat steps 4-6 for the *y*-component of  $\vec{\mathbf{v}}$ .